Browse views: by Year, by Function, by GLF, by Subfunction, by Conference, by Journal

Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila

Ling, Daijun, Song, Ho-Juhn, Garza, Dan, Neufeld, Thomas P and Salvaterra, Paul M (2009) Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PloS ONE, 4 (1). e4201. ISSN 1932-6203

Abstract

The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Abeta(1-42)) is believed to play a causative role in the development of AD. Here we expressed human Abeta(1-42) and amyloid beta 40 (Abeta(1-40)) in Drosophila neurons. Abeta(1-42) but not Abeta(1-40) causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Abeta(1-42)-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Abeta(1-42) expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Abeta(1-42) and Abeta(1-40), and reveal an Abeta(1-42)-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury.

Item Type: Article
Related URLs:
Related URLs:
Date Deposited: 13 Oct 2015 13:16
Last Modified: 13 Oct 2015 13:16
URI: https://oak.novartis.com/id/eprint/1663

Search

Email Alerts

Register with OAK to receive email alerts for saved searches.