Browse views: by Year, by Function, by GLF, by Subfunction, by Conference, by Journal

Sub-Zero Temperature Chromatography for Reduced Back-Exchange and Improved Dynamic Range in Amide Hydrogen Deuterium Exchange Mass Spectrometry

Venable, John, Okach, Linda, Agarwalla, Sanjay and Brock, Ansgar (2012) Sub-Zero Temperature Chromatography for Reduced Back-Exchange and Improved Dynamic Range in Amide Hydrogen Deuterium Exchange Mass Spectrometry. Analytical Chemistry, 84 (21). pp. 9601-9608. ISSN 0003-2700

Abstract

Amide hydrogen/deuterium exchange is a commonly used technique for studying the dynamics of proteins and their interactions with other proteins or ligands. When coupled with liquid chromatography and mass spectrometry, hydrogen/deuterium exchange provides several unique advantages over other structural characterization techniques including very high sensitivity, the ability to analyze proteins in complex environments, and a large mass range. A fundamental limitation of the technique arises from the loss of deuterium label (back-exchange) during the course of the analysis. A method to limit loss of label during the separation stage of the analysis using sub-zero temperature reversed-phase chromatography is presented. The approach is facilitated by the use of buffer modifiers that prevent freezing. We evaluated ethylene glycol, dimethyl formamide, formamide, and methanol for their freezing point suppression capabilities, effects on peptide retention, and their compatibilities with electrospray ionization. Ethylene glycol was used extensively because of its good electrospray ionization compatibility; however formamide has potential to be a superior modifier if detrimental effects on ionization can be overcome. It is demonstrated using suitable buffer modifiers that separations can be performed at temperatures as low as -30°C with negligible loss of deuterium label, even during long chromatographic separations. The reduction in back-exchange is shown to increase the dynamic range of HDX MS in terms of mixture complexity, and the magnitude with which changes in deuteration level can be quantified.

Item Type: Article
Related URLs:
Additional Information: archiving not formally supported by this publisher
Related URLs:
Date Deposited: 13 Oct 2015 13:14
Last Modified: 13 Oct 2015 13:14
URI: https://oak.novartis.com/id/eprint/8431

Search

Email Alerts

Register with OAK to receive email alerts for saved searches.