Browse views: by Year, by Function, by GLF, by Subfunction, by Conference, by Journal

Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion.

Yang, Yonghua and Rao, Rehka and Shen, Jie and Tang, Yun and Fiskus, Warren and Nechtman, John and Atadja, Peter and Bhalla, Kapil (2008) Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Research, 68 (12). pp. 4833-4842. ISSN 1538-7445

Abstract

Heat shock protein (hsp) 90 is an ATP-dependent molecular chaperone that maintains the active conformation of client oncoproteins in cancer cells. An isoform, hsp90alpha, promotes extracellular maturation of matrix metalloproteinase (MMP)-2, involved in tumor invasion and metastasis. Knockdown of histone deacetylase (HDAC) 6, which deacetylates lysine residues in hsp90, induces reversible hyperacetylation and attenuates ATP binding and chaperone function of hsp90. Here, using mass spectrometry, we identified seven lysine residues in hsp90alpha that are hyperacetylated after treatment of eukaryotic cells with a pan-HDAC inhibitor that also inhibits HDAC6. Depending on the specific lysine residue in the middle domain involved, although acetylation affects ATP, cochaperone, and client protein binding to hsp90alpha, acetylation of all seven lysines increased the binding of hsp90alpha to 17-allyl-amino-demethoxy geldanamycin. Notably, after treatment with the pan-HDAC inhibitor panobinostat (LBH589), the extracellular hsp90alpha was hyperacetylated and it bound to MMP-2, which was associated with increased in vitro tumor cell invasiveness. Treatment with antiacetylated hsp90alpha antibody inhibited in vitro invasion by tumor cells. Thus, reversible hyperacetylation modulates the intracellular and extracellular chaperone function of hsp90, and targeting extracellular hyperacetylated hsp90alpha may undermine tumor invasion and metastasis.

Item Type: Article
Related URLs:
Additional Information: author can archive post-print (ie final draft post-refereeing); Authors final version may be deposited on institutional website/ repository if required by institution
Related URLs:
Date Deposited: 14 Dec 2009 13:52
Last Modified: 31 Jan 2013 01:05
URI: https://oak.novartis.com/id/eprint/829

Search

Email Alerts

Register with OAK to receive email alerts for saved searches.