Browse views: by Year, by Function, by GLF, by Subfunction, by Conference, by Journal

In-cell selectivity profiling of serine protease inhibitors by activity-based proteomics.

Gillet, Ludovic, Namoto, Kenji, Ruchti, Alexandra, Hoving, Sjouke, Boesch, Danielle, Inverardi, Bruno, Mueller, Dieter, Coulot, Michele, Schindler, Patrick, Schweigler, Patrick, Bernardi, Anna and Gil Parrado, Shirley (2008) In-cell selectivity profiling of serine protease inhibitors by activity-based proteomics. Molecular & Cellular Proteomics : MCP, 7 (7). pp. 1241-1253. ISSN 1535-9484

Abstract

Activity-based proteomics is a methodology that is used to quantify the catalytically active subfraction of enzymes present in complex mixtures such as lysates or living cells. To apply this approach for in-cell selectivity profiling of inhibitors of serine proteases, we designed a novel activity-based probe (ABP). This ABP consists of (i) a fluorophosphonate-reactive group, directing the probe toward serine hydrolases or proteases and (ii) an alkyne functionality that can be specifically detected at a later stage with an azide-functionalized reporter group through a Cu(I)-catalyzed coupling reaction ("click chemistry"). This novel ABP was shown to label the active site of several serine proteases with greater efficiency than a previously reported fluorophosphonate probe. More importantly, our probe was cell-permeable and achieved labeling of enzymes within living cells with efficiency similar to that observed for the corresponding lysate fraction. Several endogenous serine hydrolases whose activities were detected upon in-cell labeling were identified by two-dimensional gel and MS analyses. As a proof of principle, cell-permeable inhibitors of an endogenous serine protease (prolyl endopeptidase) were assessed for their potency and specificity in competing for the in situ labeling of the selected enzyme. Altogether these results open new perspectives for safety profiling studies in uncovering potential cellular "side effects" of drugs (unanticipated off-target inhibition or activation) that may be overlooked by standard selectivity profiling methods.

Item Type: Article
Related URLs:
Additional Information: author can archive post-print (ie final draft post-refereeing); Publisher's version/PDF cannot be used
Related URLs:
Date Deposited: 14 Dec 2009 13:53
Last Modified: 31 Jan 2013 01:06
URI: https://oak.novartis.com/id/eprint/794

Search

Email Alerts

Register with OAK to receive email alerts for saved searches.