Browse views: by Year, by Function, by GLF, by Subfunction, by Conference, by Journal

Amino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine.

Osborne, Colin and Leitner, Ingrid and Favre, Bertrand and Ryder, Neil (2005) Amino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine. Antimicrobial Agents and Chemotherapy, 49 (7). pp. 2840-2844. ISSN 0066-4804

Abstract

There has only been one clinically confirmed case of terbinafine resistance in dermatophytes, where six sequential Trichophyton rubrum isolates from the same patient were found to be resistant to terbinafine and cross-resistant to other squalene epoxidase (SE) inhibitors. Microsomal SE activity from these resistant isolates was insensitive to terbinafine, suggesting a target-based mechanism of resistance (B. Favre, M. Ghannoum, and N. S. Ryder, Med. Mycol. 42:525-529, 2004). In this study, we have characterized at the molecular level the cause of the resistant phenotype of these clinical isolates. Cloning and sequencing of the SE gene and cDNA from T. rubrum revealed the presence of an intron in the gene and an open reading frame encoding a protein of 489 residues, with an equivalent similarity (57%) to both yeast and mammalian SEs. The nucleotide sequences of SE from two terbinafine-susceptible strains were identical whereas those of terbinafine-resistant strains, serially isolated from the same patient, each contained the same single missense introducing the amino acid substitution L393F. Introduction of the corresponding substitution in the Candida albicans SE gene (L398F) and expression of this gene in Saccharomyces cerevisiae conferred a resistant phenotype to the transformants when compared to those expressing the wild-type sequence. Terbinafine resistance in these T. rubrum clinical isolates appears to be due to a single amino acid substitution in SE.

Item Type: Article
Related URLs:
Additional Information: author can archive post-print (ie final draft post-refereeing); but on personal or university-hosted websites only
Related URLs:
Date Deposited: 14 Dec 2009 13:57
Last Modified: 14 Dec 2009 13:57
URI: https://oak.novartis.com/id/eprint/576

Search

Email Alerts

Register with OAK to receive email alerts for saved searches.