Browse views: by Year, by Function, by GLF, by Subfunction, by Conference, by Journal

Enrichment of extremely noisy high-throughput screening data using a naïve Bayes classifier.

Glick, Meir and Klon, Anthony and Acklin, Pierre and Davies, John (2004) Enrichment of extremely noisy high-throughput screening data using a naïve Bayes classifier. Journal of Biomolecular Screening : the official journal of the Society for Biomolecular Screening, 9 (1). pp. 32-36. ISSN 1087-0571

Abstract

The noise level of a high-throughput screening (HTS) experiment depends on various factors such as the quality and robustness of the assay itself and the quality of the robotic platform. Screening of compound mixtures is noisier than screening single compounds per well. A classification model based on naïve Bayes (NB) may be used to enrich such data. The authors studied the ability of the NB classifier to prioritize noisy primary HTS data of compound mixtures (5 compounds/well) in 4 campaigns in which the percentage of noise presumed to be inactive compounds ranged between 81% and 91%. The top 10% of the compounds suggested by the classifier captured between 26% and 45% of the active compounds. These results are reasonable and useful, considering the poor quality of the training set and the short computing time that is needed to build and deploy the classifier.

Item Type: Article
Related URLs:
Additional Information: author can archive post-print (ie final draft post-refereeing); Publisher's version/PDF cannot be used
Keywords: high-throughput screening, compound mixtures, molecular similarity, extended-connectivity fingerprints, naïve Bayes
Related URLs:
Date Deposited: 14 Dec 2009 14:01
Last Modified: 31 Jan 2013 01:20
URI: https://oak.novartis.com/id/eprint/324

Search

Email Alerts

Register with OAK to receive email alerts for saved searches.