Serine/threonine kinase-protein kinase B and extracellular signal-regulated kinase regulate ventilator-induced pulmonary fibrosis after bleomycin-induced acute lung injury: a prospective, controlled animal experiment.
Li, Li-Fu, Liao, Shuen-Kuei, Huang, Chung-Chi, Hung, Ming-Jui and Quinn, Deborah (2008) Serine/threonine kinase-protein kinase B and extracellular signal-regulated kinase regulate ventilator-induced pulmonary fibrosis after bleomycin-induced acute lung injury: a prospective, controlled animal experiment. Critical care (London, England), 12 (4). R103. ISSN 1466-609X
Abstract
INTRODUCTION: Lung fibrosis, reduced lung compliance, and severe hypoxemia found in patients with acute lung injury often result in a need for the support of mechanical ventilation. High-tidal-volume mechanical ventilation can increase lung damage and fibrogeneic activity but the mechanisms regulating the interaction between high tidal volume and lung fibrosis are unclear. We hypothesized that high-tidal-volume ventilation increased pulmonary fibrosis in acute lung injury via the serine/threonine kinase-protein kinase B (Akt) and mitogen-activated protein kinase pathways. METHODS: After 5 days of bleomycin administration to simulate acute lung injury, male C57BL/6 mice, weighing 20 to 25 g, were exposed to either high-tidal-volume mechanical ventilation (30 ml/kg) or low-tidal-volume mechanical ventilation (6 ml/kg) with room air for 1 to 5 hours. RESULTS: High-tidal-volume ventilation induced type I and type III procollagen mRNA expression, microvascular permeability, hydroxyproline content, Masson's trichrome staining, S100A4/fibroblast specific protein-1 staining, activation of Akt and extracellular signal-regulated kinase (ERK) 1/2, and production of macrophage inflammatory protein-2 and 10 kDa IFNgamma-inducible protein in a dose-dependent manner. High-tidal-volume ventilation-induced lung fibrosis was attenuated in Akt-deficient mice and in mice with pharmacologic inhibition of ERK1/2 activity by PD98059. CONCLUSION: We conclude that high-tidal-volume ventilation-induced microvascular permeability, lung fibrosis, and chemokine production were dependent, in part, on activation of the Akt and ERK1/2 pathways.
Item Type: | Article |
---|---|
Related URLs: | |
Related URLs: | |
Date Deposited: | 13 Oct 2015 13:17 |
Last Modified: | 13 Oct 2015 13:17 |
URI: | https://oak.novartis.com/id/eprint/1080 |